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Abstract
The elastic behavior and stability of elemental crystals are studied in the neighborhood of a
stable equilibrium state, also called a phase, at finite pressure p. It is shown that two kinds of
elastic constants are needed to describe elasticity under pressure. One set, designated as
ci j , i, j = 1–6, determines stability or lack of it; another set, designated as c p

i j , describes the
linear relation between small additional stresses and strains added to the crystal in equilibrium
at p. The stress–strain coefficients c p

i j differ from previous formulations of the stress–strain
relations by Barron and Klein (1965 Proc. Phys. Soc. 85 523) and Wallace (1972
Thermodynamics of Crystals (New York: Wiley)), who give ci j as stress–strain coefficients.
Hence we were led to verify the use of the c p

i j using a first-principles numerical calculation
example for face centered cubic Al at 1500 kbar. The Gibbs free energy G of the crystal under
pressure is shown to provide both a simple definition of equilibrium and an efficient way to
calculate all the elastic constants of a general crystal. A computer program finds stable phases
by making jumps in structure from an arbitrary initial structure; the jumps converge to minima
of G with respect to the structure. In the calculation, 21 elastic constants are evaluated from a
special set of G values and the 6 × 6 elastic constant matrix is tested for stability.

1. Introduction

Linear elasticity theory in crystals in equilibrium states under
hydrostatic pressure p concerns two properties of the state:
(1) the coefficients of a linear relation between added small
strains and the stresses produced in the crystal, (2) the stability
of the equilibrium structure. Later a precise definition of
equilibrium will be given, but basically equilibrium is a state
in which there are no unbalanced stresses, i.e., p is balanced
by an internal stress −p.

Papers developing the theory include the classic formu-
lations of Barron and Klein [1] and of Wallace [2] as well
as some more recent publications that will be cited [3–10].
In [1, 2] two sets of elastic constants are introduced: (1) the
set we will designate ci j, i, j = 1–6, which we will show are
the coefficients of the second-order terms in an expansion of
the Gibbs free energy of a non-vibrating crystal G ≡ E + pV
(where E is the internal energy and V the volume) in strains
around an equilibrium point, (2) a set we will designate by
cV

i j , i, j = 1–6 which are the coefficients of the second-order
terms in an expansion of E in strains around equilibrium.
Both [1] and [2] find that the ci j are the coefficients in the
stress–strain relations ([1], equation 5.2, [2], equation 2.52).
All the papers [1–10], including our own, believe that there is
one basic set of elastic constants, the ci j , that fit three properties

of the equilibrium state (stability condition, stress–strain rela-
tions, elastic equations of motion). These properties are not de-
rived in [3–10], but reference is made to [1, 2]. Most of [3–10]
evaluate the ci j from changes in E produced by strains, we find
ci j from changes in G, Wang et al [8] find what they consider
the basic set from evaluation of the coefficients in stress–strain
relations.

What is new in this paper is that we find that the coeffi-
cients in stress–strain relations are given by a third set of elastic
constants c p

i j , i, j = 1–6, which are not specifically introduced
or related to the ci j in any of [1–10]. This disagreement with
previous papers, particularly [1] and [2], on elasticity under hy-
drostatic pressure p led us to make a numerical verification of
the stress–strain relation by comparison of the stress found by
differentiating E with respect to strains in the strained lattice;
this calculated stress is shown equal to the sum of the coeffi-
cients c p

i j multiplying the strains.
Although we have introduced three sets of elastic

constants (ci j , cV
i j , c p

i j ), there are only two independent sets
since the c p

i j reduce to cV
i j when the strain keeps the volume

constant. An important conclusion is that the elastic equations
of motion must also use the c p

i j , hence elastic wave velocities
should be calculated with the c p

i j .
States of a crystal are the static quantum states which

are first-principles solutions of the electronic equations (e.g.,
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the Kohn–Sham equations with corrections) with fixed nuclear
positions. We are concerned about elastic properties in the
subset of states called equilibrium states and in the further
subsets which are the stable equilibrium states called phases.

We limit the development here to non-vibrating crystals
with one atom per unit cell, i.e., to elements. A state has
calculable values of six structural parameters, also called lattice
parameters, which could be the sides a, b, c and angles α, β, γ

of the unit cell as a parallelepiped, and also has values of E and
V . If an external pressure p is present, the Gibbs free energy
G can be defined for any state—equilibrium is not required.
Definitions of stress, strain, and elastic constants will be given
for small perturbations around the equilibrium states which
were used as reference states.

Sections 2.1 and 2.2 give the strain expansions of δG and
δE around equilibrium and define the corresponding elastic
constants ci j , cV

i j .
Section 2.3 derives the linear stress–strain relations at

constant pressure and defines the c p
i j .

Section 2.4 provides a numerical check that the stress–
strain relations use the c p

i j .
Section 3 describes the minimum path program (MNP)

which finds all the ci j of a given structure at a given p from δG,
tests that structure for stability and converges to a minimum of
G.

Section 4 discusses the consequences of having two sets
of elastic constants and gives example of failures to choose
the correct set. The advantages of using G in the theory are
described; it is noted that the bulk modulus is related to the ci j ,
not the c p

i j .

2. Expansions in strains around equilibrium states

Equilibrium states can be defined either as states in which
all first derivatives of G with respect to strains εi , i = 1–
6 vanish at constant pressure or in which all but one of
the first derivatives of E at constant volume vanish. (The
decrease by one is due to the constraint of constant volume V .)
Stable equilibrium requires that G or E be a minimum with
respect to small strains at constant pressure or constant volume
respectively. These definitions come from thermodynamic
theory [11]. That theory is here simplified to consideration
of a small number of degrees of freedom, namely the six
independent strains εi . All small homogeneous deformations
can be expressed as a superposition of strains [12].

Our strain expansions could be in either Eulerian strains
or Lagrangian strains as in [1, 2]. However Lagrangian
strains mix first- and second-order displacement gradients,
and complicate the separation of first- and second-order strain
effects, hence we have chosen the simpler Eulerian form.

2.1. δG expansion in strains

Around an equilibrium state changes in G can be expanded
to second order in powers of strains using only second-order
terms εiε j , since first derivatives of G vanish. Hence we have

δG

V0
≡ G(ε) − G0

V0
= 1

2

6∑

i, j=1

ci jεiε j , (1)

where G0 is the value of G at the equilibrium state, V0

the volume at the equilibrium state and ε is a vector with
components εi , i = 1–6 that give all components of the strain
tensor; then (1) gives a quantitative definition of the ci j at p.
The condition for stability that G be a minimum for all small
strains is the same as the condition that the quadratic form in εi

in (1) be positive definite, or, equivalently, that the 6×6 matrix
ci j has all positive eigenvalues [2]. The ci j are functions of
p and thus determine the stability or instability of a phase at
p. The paper by Ackland and Reed [7], equation A14 also
gives the expansion (1) of δG around an equilibrium state. The
expansion (1) is also given in our previous papers [6].

The simple condition for an equilibrium state in (1) has
been criticized as wrong in several ways [3, 4]. These
criticisms illustrate misunderstandings of the meaning of the
Gibbs free energy. In [3] the authors wrongly state that “since
strained crystal states are essentially non-equilibrium, it is
impossible to determine the Gibbs free energy . . . at such
states’ ([3], p 8101), overlooking the fact that the definition
here is clearly applicable to such states and is a well-defined
thermodynamic state function. In [4] the authors wrongly state
that ‘. . . the derivatives (∂2G/∂εi∂ε j)/V , which are not in any
case elastic constants’ ([4], p 8784), and ‘. . . strain derivatives
of the Gibbs free energy G . . . do not yield properly defined
elastic constants’ ([4], p 8785), whereas (1) clearly shows that
ci j are the second strain derivatives of G.

At an equilibrium state (1) also provides a direct simple
way of evaluating the ci j with one calculation of G needed
for each additional ci j by choosing suitable strains with which
to find δG. This procedure is used to find the 21 elastic
constants for the case of no symmetry in our minimum path
program (MNP) (see section 3). This procedure based on
δG evaluations is simpler than procedures based on E , which
require evaluation of second derivatives of E [10].

The MNP program also uses (1) to find stable equilibrium
structures by making a series of jumps in structure that home in
on minima of G. We also have used a computational procedure
based on (1) for finding equilibrium states of body-centered-
tetragonal (bct) or hexagonal close-packed (hcp) structures
(each has two structural parameters) which follows the
epitaxial Bain path (EBP); the EBP incorporates a minimum
of G as one parameter varies at a value of a second structural
parameter, then follows the EBP as the second parameter varies
until the path shows a second minimum which gives the stable
equilibrium state [13].

2.2. δE expansion in strains

From
δG

V0
= δE

V0
+ p

δV

V0
(2)

by expanding δV in strains to second order [14]

δV

V0
≡ V (ε) − V0

V0

∼= ε1 + ε2 + ε3 + ε1ε2 + ε2ε3 + ε3ε1

− 1
4 (ε2

4 + ε2
5 + ε2

6), (3)

2
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and rearranging (1), δE around the equilibrium state can be
written as an expansion in strains to second order [14]

δE

V0
= −p(ε1 + ε2 + ε3) + 1

2

6∑

i, j=1

cV
i jεiε j , (4)

where

cV
ii = cii i = 1, 2, 3

cV
i j = cV

ji = ci j − p i, j = 1, 2, 3, i �= j

cV
ii = cii + p/2 i = 4, 5, 6,

cV
i j = cV

ji = ci j i = 1, 2, 3, j = 4, 5, 6,

and i, j = 4, 5, 6, i �= j.

(5)

For cubic symmetry (5) gives

c11 = cV
11, c12 = cV

12 + p, c44 = cV
44 − p/2. (6)

2.3. Stress–strain equations from δE

To extend the theory to find stresses, we need to differentiate
δE with respect to strains. The equation (1) and its
rearrangement in (4) say that δG and δE are simple analytic
functions of the εi (second-order polynomials in εi ) when p
and the ci j(p) are constant. Hence we can clearly differentiate
δE with respect to εi at constant p to obtain an expression for
the stress in a strained structure to first order in εi . The results
apply both when V is changed by the strain and also when V
is kept constant by the strain.

The strain derivatives of δE(ε) in (4) for a strain ε are

σi (ε) = 1

V (ε)

(
∂ E(ε)

∂εi

)

ε �=0

, i = 1–6 (7)

= V0

V (ε)

[
−p(δi1 + δi2 + δi3) +

6∑

j=1

cV
i jε j

]
. (8)

Introducing V0/V (ε) expanded to first order in εi from (3)
gives

δσi (ε) ≡ σi (ε) + p(δi1 + δi2 + δi3) =
6∑

j=1

c p
i jε j , (9)

where

c p
i j = cV

i j + p, i, j = 1, 2, 3;
= cV

i j , i = 1–6, j = 4, 5, 6.
(10)

The c p
i j are produced from cV

i j by the effect of the factor
V0/V (ε) expanded to first order in the εi from (3). Thus
when ε keeps V constant at the value (to first order in εi ) V0,
c p

i j is equivalent to cV
i j . The quadratic forms with cV

i j and c p
i j

coefficients differ by a term proportional to (ε1 + ε2 + ε3)
2

which vanishes for δV = 0.
The 6 × 6 elastic constant matrices in the stress–strain

relation, the cV
i j at constant V , and the c p

i j for all stresses in

terms of the ci j are:

{cV
i j} =

⎛
⎜⎜⎜⎜⎜⎝

c11 c12 − p c13 − p c14

c21 − p c22 c23 − p c24

c31 − p c32 − p c33 c34

c41 c42 c43 c44 + p/2
c51 c52 c53 c54

c61 c62 c63 c64

c15 c16

c25 c26

c35 c36

c45 c46

c55 + p/2 c56

c65 c66 + p/2

⎞

⎟⎟⎟⎟⎟⎠
,

{c p
i j} =

⎛

⎜⎜⎜⎜⎜⎝

c11 + p c12 c13 c14

c21 c22 + p c23 c24

c31 c32 c33 + p c34

c41 c42 c43 c44 + p/2
c51 c52 c53 c54

c61 c62 c63 c64

c15 c16

c25 c26

c35 c36

c45 c46

c55 + p/2 c56

c65 c66 + p/2

⎞

⎟⎟⎟⎟⎟⎠
.

2.4. Numerical verification of the stress–strain equations

Our equation (9) for the stresses produced by strain ε in a
crystal initially in equilibrium at p disagrees with the linear
stress–strain relation given by Barron and Klein in their 1965
paper [1] for the case of isotropic applied stress. Their equation
(5.2) states that the coefficients of the strains ε j are the ci j ,
rather than cV

i j or c p
i j . Wallace [2] also gives a stress–strain

relation with the ci j as coefficients (equation 2.52). Hence
we felt it desirable to verify (9) by a numerical first-principles
calculation of the stress in fcc Al at 1500 kbar from the
derivative of E in (7), which is shown to agree with the
linear form in the ε j using c p

i j , but not cV
i j or ci j . The total-

energy calculations were made with the well-tested WIEN2k
band structure program [15] using a two atom bct cell; the
parameters such as RMT , k-points in the Brillouin zone, etc
used in the calculations can be found in [14]. The numerical
data of fcc Al from MNP calculations of the minimum of G at
1500 kbar are listed in table 1.

Consider the strained lattice specified by the six-
component strain vector ε(1) ≡ (ε1, ε2, ε3, ε4, ε5, ε6) ≡
(0.02, 0.02, 0, 0, 0, 0). Evaluate σi = (∂ E(ε)/∂εi)/V (ε) for
i = 1 directly from E values, at ε(2) ≡ (0.04, 0.02, 0, 0, 0, 0)

and ε(3) ≡ (0, 0.02, 0, 0, 0, 0) by fitting a quadratic to
E(ε(1)), E(ε(2)), E(ε(3)) to give

δσ1 = σ1 + p = 0.26 Mbar (11)

to compare with

δσ1 = c11ε1 + c12ε2 = 0.24 Mbar (12)

δσ1 = cV
11ε1 + cV

12ε2 = 0.21 Mbar (13)

3
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Table 1. Lattice parameters a0, c0 and volume/cell V0 for bct cell of
fcc Al at p = 1500 kbar and elastic constants ci j , cV

i j , cp
i j in Mbar,

referred to bct orthogonal axes at 45◦ in the x–y plane to fcc
orthogonal axes.

a0 = 4.472 527 au,
c0 = 6.290 222 au,
V0 = a2

0c0 = 125.826 442 au3/cell

i j 11 12 13 33 44 66

ci j 9.199 2.820 4.881 7.043 3.197 1.214

cV
i j 9.199 1.320 3.381 7.043 3.947 1.964

cp
i j 10.699 2.820 4.881 8.543 3.947 1.964

δσ1 = c p
11ε1 + c p

12ε2 = 0.27 Mbar. (14)

For the strain ε(1), which changes V , only the c p
11 coefficients

are correct.
Similarly with ε(4) ≡ (0, 0, 0, 0.04, 0, 0) with δV = 0 to

first order in ε4, differentiation of E(ε(4)) gives

δσ
p

4

(
ε(4)

) = 0.16 Mbar (15)

c44ε
(4)

4 = 0.13 Mbar (16)

cV
44ε

(4)

4 = c p
44ε

(4)

4 = 0.16 Mbar. (17)

Again the c p
44 coefficient is correct, but also cV

44, whereas c44 is
not.

3. The minimum path (MNP) programs

The MNP programs use the expansion of δG around any
crystal state of any symmetry in strains of that state to find
a path to a state at a minimum of G at a given pressure p. That
minimum state is then a phase. Thus far the states are restricted
to one atom per primitive cell, hence apply to elements, but
generalization is possible to more atoms in the cell. In the
general one atom per cell state, G has an expansion in strains
that is a generalization of (1)

δG

V0
= G − G0

V0
=

6∑

i=1

ciεi + 1

2

6∑

i, j=1

ci jεiε j . (18)

Terms linear in the εi are needed in (18), since the state
is not generally an equilibrium state. In (18) G0 is the value
of the Gibbs free energy at the initial state and G the value
at a structure strained from the initial state. The coefficients
ci , ci j are evaluated by calculating δG at a set of strains chosen
to find the coefficients individually one at a time. There are
27 coefficients ci , ci j requiring 28 values of G, including G0.
Since the program is designed to work with any unit cell, a
standard set of orthogonal axes is used (x1 is along a, x2 in ab
plane ⊥ x1, x3 ⊥ x1 and x2). These axes will not necessarily
coincide with symmetry axes (but will for cubic, tetragonal
and orthorhombic symmetries). Hence the program always
evaluates 6 ci and 21 ci j coefficients.

The choice of the 12 strains ±εi , i = 1–6, ε j = 0, j �=
i, j = 1–6, gives 12 equations for 6 ci and 6 cii

δG
(±ε(i)

)

V0
= ±ciεi + 1

2
ciiε

2
i , i = 1–6, (19)

where ±ε(i) means a strain vector with only one nonzero
component ±εi . The sum and difference of δG for ±εi give
linear equations for cii and ci respectively.

The choice of the 15 two-component strains (two nonzero
strains) ε(i j) = (· · · εi · · · ε j · · ·), i, j = 1–6, i �= j, i < j
gives 15 more equations for ci j ,

δG
(
ε(i j)

)

V0
= ciεi + c jε j + 1

2
ciiε

2
i + 1

2
c j jε

2
j + ci jεiε j . (20)

Then (20) is a linear equation for ci j using previously
determined values of ci , c j , cii , c j j ; and c ji = ci j fills out
the 6 × 6 symmetric matrix of ci j .

Once the 27 ci and ci j are calculated, we solve 6
simultaneous linear equations for εi that would take the crystal
exactly to a minimum of G if the expansion to second order in
strains in (18) were exact; these equations are given by

∂G

∂εi
= ci +

6∑

j=1

ci jε j = 0. (21)

Since the expansion to second order in (18) is not
exact, the ci found from (21) are finite, but in the strained
state given by the solution of (21) the new ci are smaller.
Repetition of the process starting from the strained state found
from (21) converges rapidly toward a minimum of G, using as
a convergence criterion that all the ci are less than a given size.

The program checks whether the curvatures of G with
respect to all strains are positive, as would be expected in
a ‘bowl’ of G values around the given state. The check is
made by determining whether all six eigenvalues of the ci j

matrix are positive. If negative eigenvalues appear indicating
negative curvature for some strains the program selects the
most negative eigenvalue and takes steps in the direction
of decreasing G obtained from the eigenfunction of that
eigenvalue leading to a minimum. The check is repeated until
all eigenvalues are positive, then (21) is used to converge to
a minimum of G. In figure 1 we show both the sequence
of jumps in the εi from (21) (solid lines, called CASE1) and
also steps in a direction to lower G from the eigenfunctions
of negative eigenvalues (dashed line, called CASE2) starting
from an initial fcc state for Zn and a bcc state for vanadium,
both known to be unstable [16, 17]. The sequence of states
terminates in rhombohedral states (which are denoted as rhl

and rhu in [16, 17]).
The MNP programs track down stable phases, they

determine elastic constants ci j in equilibrium and they check
the stability of any given one-atom-per-cell structure by
checking that all eigenvalues of the ci j matrix are positive.
We illustrate the application to finding ci j in table 2, which
compares ci j for Al and Cu at p = 0 with experiment [18, 19]
and with a recent first-principles program for calculation of
elastic constants using statistical theory to reduce random
errors [20]. Comparison to experiment shows that the MNP
results are as good as or better than the elaborate procedure
in [20].

4
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Figure 1. (a) The paths to the minima of G of the rhombohedral
phase of Zn at 5.0 kbar starting from an initial fcc phase as found
with the MNP procedure. (b) The paths to the minima of G of the
rhombohedral phase of vanadium at 1155 kbar starting from an
initial bcc phase as found with the MNP procedure. In both (a) and
(b) the solid (dashed) lines between the stage’s points are CASE1
(CASE2) stages (see the text).

4. Discussion

The new feature introduced in this paper is that one must
use two sets of elastic constants to describe the behavior of
a crystal under pressure. Previously one set, the ci j , was
thought to describe stability, stress–strain relations and the
elastic equations of motion. The second set c p

i j needed for
stress–strain relations and elastic equations of motion has not
explicitly appeared before and its relation to the ci j exhibited,
but has implicitly been evaluated by Wang et al [8] from direct
calculation of stress–strain relations.

The belief that one set of elastic constants fitted all the
properties has led to applications of the ci j and c p

i j in some
papers, with which we disagree. Thus Landa et al [9] used
the cV

i j , the form of the c p
i j that applies to strains that keep V

constant, to discuss stability in vanadium, whereas the ci j give
results in better agreement with experiment [17]. Wang et al
[8] used directly calculated c p

i j (different notation is used in [8])
to discuss stability in zinc blende lattices under pressure, rather
than the ci j . Sin’ko [10] assumes the ci j are the coefficients in
the stress–strain relation rather than the c p

i j . Steinle-Neumann
et al [5] use the ci j to calculate elastic wave velocities in hcp
Fe under pressure rather than the c p

i j .

Table 2. Comparison of the MNP results with the experimental
data [18, 19] and the calculated data [20] of the lattice constant a, the
elastic constants c11, c12, c44 of fcc Al and fcc Cu at p = 0 and
T = 0. The experimental data stem from [18] for the lattice
constants (extrapolated to 0 K values), and from [19] for the elastic
constants (0 K values).

Fcc Al a (au) c11 (Mbar) c12 (Mbar) c44 (Mbar)

This work 7.646 1.114 0.601 0.329
Exp. [18, 19] 7.620 1.143 0.619 0.316
Theory [20] 7.542 1.200 0.610 0.340

Fcc Cu a (au) c11 (Mbar) c12 (Mbar) c44 (Mbar)

This work 6.849 1.752 1.145 0.742
Exp. [18, 19] 6.809 1.762 1.249 0.818
Theory [20] 6.726 2.140 1.550 0.990

The key to deriving the new elastic constants c p
i j is the

initial simple expansion of δG in strains with only second-
order terms εiε j in (1). Then rearrangement in (4) gives
δE a simple expansion in first-order and second-order strains
with p and the coefficients ci j constants. Hence stresses are
straightforwardly found by differentiating E with respect to
strain components, which gives the c p

i j as coefficients in (9).
To verify that this new stress–strain relation with c p

i j is correct,
we make the numerical calculation on fcc Al at 1500 kbar in
section 2.4.

We are not clear on why Barron and Klein [1] and
Wallace [2] did not find the c p

i j coefficients in stress–
strain relations. We note that [1, 2] try to solve a more
difficult and more general problem than we do, namely the
stress–strain relations in an arbitrary initial state, which will
generally contain anisotropic stresses. They do not mention
equilibrium, whereas we discuss only small perturbations
around equilibrium. The stress–strain formulae for the
isotropic applied stress considered here are then obtained by
specializing the general formulae.

The bulk modulus B = −V dp/dV from the equation of
state p(V ) is a stress (δp)–strain (δV ) relation along what
can be called the equilibrium line, i.e., the succession of
equilibrium states as both p and V change. One might then
expect B to be related to the c p

i j , which describe stress–strain
relations. But the usual stress–strain relation is in a non-
equilibrium state at one value of p, whereas B is the stress–
strain coefficient for equilibrium states and is in fact related
to the ci j by formulae independent of p. In another paper we
show that the ci j produce strains along the equilibrium line for
a given stress δp, hence prove that B is related to ci j , and give
the explicit form of that relation for arbitrary symmetry [21].
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[9] Landa A, Klepeis J, Söderlind P, Naumov I, Velikokhatnyi O,

Vitos L and Ruban A 2006 J. Phys.: Condens. Matter
18 5079
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